Restoration of normal L-type Ca2+ channel function during Timothy syndrome by ablation of an anchoring protein.

نویسندگان

  • Edward P Cheng
  • Can Yuan
  • Manuel F Navedo
  • Rose E Dixon
  • Madeline Nieves-Cintrón
  • John D Scott
  • Luis F Santana
چکیده

RATIONALE L-type Ca(2+) (Ca(V)1.2) channels shape the cardiac action potential waveform and are essential for excitation-contraction coupling in heart. A gain-of-function G406R mutation in a cytoplasmic loop of Ca(V)1.2 channels causes long QT syndrome 8 (LQT8), a disease also known as Timothy syndrome. However, the mechanisms by which this mutation enhances Ca(V)1.2-LQT8 currents and generates lethal arrhythmias are unclear. OBJECTIVE To test the hypothesis that the anchoring protein AKAP150 modulates Ca(V)1.2-LQT8 channel gating in ventricular myocytes. METHODS AND RESULTS Using a combination of molecular, imaging, and electrophysiological approaches, we discovered that Ca(V)1.2-LQT8 channels are abnormally coupled to AKAP150. A pathophysiological consequence of forming this aberrant ion channel-anchoring protein complex is enhanced Ca(V)1.2-LQT8 currents. This occurs through a mechanism whereby the anchoring protein functions like a subunit of Ca(V)1.2-LQT8 channels that stabilizes the open conformation and augments the probability of coordinated openings of these channels. Ablation of AKAP150 restores normal gating in Ca(V)1.2-LQT8 channels and protects the heart from arrhythmias. CONCLUSION We propose that AKAP150-dependent changes in Ca(V)1.2-LQT8 channel gating may constitute a novel general mechanism for Ca(V)1.2-driven arrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief UltraRapid Communication Restoration of Normal L-Type Ca Channel Function During Timothy Syndrome by Ablation of an Anchoring Protein

Rationale: L-type Ca (CaV1.2) channels shape the cardiac action potential waveform and are essential for excitation–contraction coupling in heart. A gain-of-function G406R mutation in a cytoplasmic loop of CaV1.2 channels causes long QT syndrome 8 (LQT8), a disease also known as Timothy syndrome. However, the mechanisms by which this mutation enhances CaV1.2-LQT8 currents and generates lethal a...

متن کامل

AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus.

RATIONALE Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca(2+)-activated K(+) (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa β1 subu...

متن کامل

Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A.

Within neurons, Ca2+-dependent inactivation (CDI) of voltage-gated L-type Ca2+ channels shapes cytoplasmic Ca2+ signals. CDI is initiated by Ca2+ binding to channel-associated calmodulin and subsequent Ca2+/calmodulin activation of the Ca2+-dependent phosphatase, calcineurin (CaN), which is targeted to L channels by the A-kinase-anchoring protein AKAP79/150. Here, we report that CDI of neuronal...

متن کامل

Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase.

Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amin...

متن کامل

A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events.

Compartmentalization of protein kinases with substrates is a mechanism that may promote specificity of intracellular phosphorylation events. We have cloned a low-molecular weight A-kinase Anchoring Protein, called AKAP18, which targets the cAMP-dependent protein kinase (PKA) to the plasma membrane, and permits functional coupling to the L-type calcium channel. Membrane anchoring is mediated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2011